Interior-Point Methods

Wing-Kin (Ken) Ma

Department of Electronic Engineering, The Chinese University Hong Kong, Hong Kong

Lesson 11, ELEG5481

Before we go...

- Interior-point methods play an indispensable role in convex optimization.
- Modern LP/SOCP/SDP solvers, such as SeDuMi, SDPT3, and DSDP, are interior-point methods.
- What we will do:

Provide intuitive insights into the ideas that led to this beautiful technique.

• What we will not go through:

Convergence/complexity analysis, coverage of all interior-point algorithms (there are numerous!), complete derivations, implementation details, . . .

Trapping Points within the Feasible Set

• Convex problem in standard form

min
$$f_0(x)$$
 (†)
s.t. $Ax = b, f_i(x) \le 0, i = 1, ..., m$

where f_0, \ldots, f_m are assumed to be convex & twice differentiable.

• The inequality constraints can be made implicit by rewriting (†) as

min
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

s.t. $Ax = b$

where $I_{-}(u) = 0$ for $u \leq 0$, $I_{-}(u) = \infty$ otherwise.

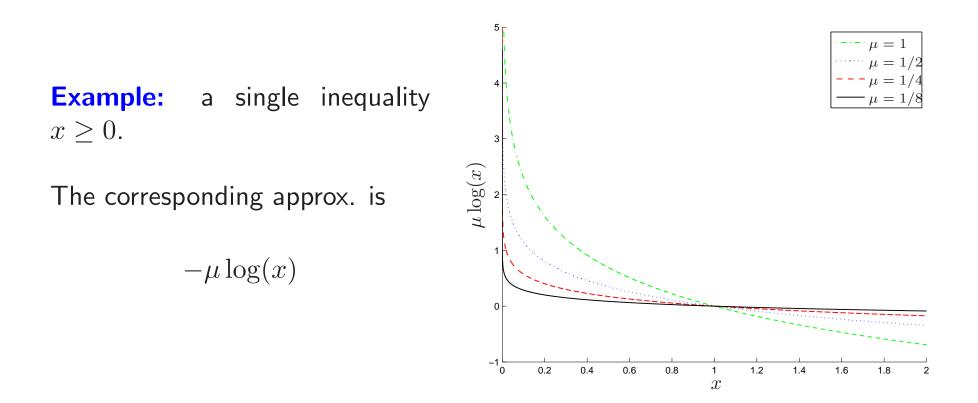
- But *I*₋ is not differentiable.
- The basic idea: approximate I_{-} by some differentiable function.

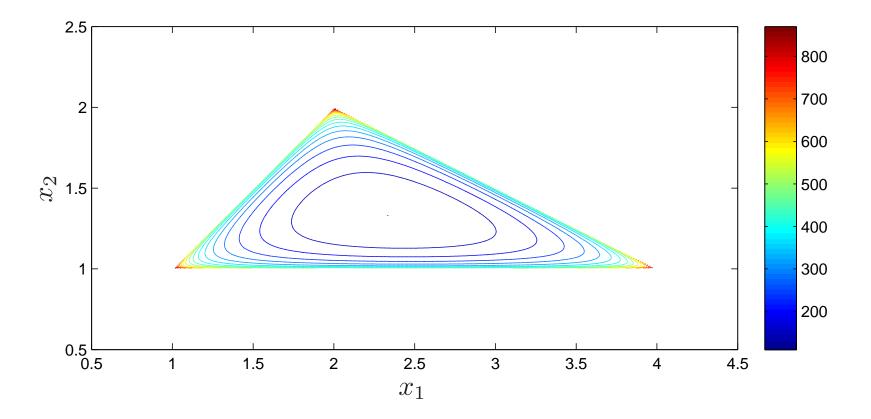
Logarithmetic Barrier Function

• Approximate I_{-} by

$$\hat{I}_{-}(u) = -\mu \log(-u), \quad \text{dom}\hat{I}_{-} = \{x \in \mathbf{R} \mid x < 0\}$$

where $\mu > 0$ is a parameter that controls the accuracy of the approx.





Example: A set of linear inequalities $b_i - a_i^T x \leq 0$, $i = 1, \ldots, m$.

The corresponding approx. is

$$-\mu \sum_{i=1}^{m} \log(a_i^T x - b_i)$$

• An approximation of the original problem

$$\min f_0(x) + \mu \phi(x) \tag{\ddagger}$$

s.t. $Ax = b$

with $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$, $\operatorname{dom} \phi = \{x \mid f_i(x) < 0, i = 1, \dots, m\}$.

- ϕ is called the **logarithmetic barrier function**. Some nice properties:
 - ϕ is convex (by composition).
 - ϕ is twice differentiable:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$
$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i^2(x)} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

• This means that the objective fn. of (‡) is convex and twice differentiable.

Building Block: Newton's Method

• Consider unconstrained minimization of convex $f: \mathbf{R}^n \to \mathbf{R}$

 $\min f(x)$

• Optimality condition: $\nabla f(x^{\star}) = 0$.

Newton's Method given an initial point $x \in \mathbf{dom} f$, a tolerance $\epsilon > 0$. repeat

1. Compute the Newton step.

$$\Delta x = -(\nabla^2 f(x))^{-1} \nabla f(x)$$

2. *Line search.* Choose step size α by solving

$$\min_{0 \le \alpha \le 1} f(x + \alpha \Delta x)$$

- 3. Update. $x := x + \alpha \Delta x$.
- 4. Stopping criterion. quit if $\frac{1}{2}\nabla f(x)^T (\nabla^2 f(x))^{-1} \nabla f(x) \le \epsilon$
- The idea: first-order approximation of the optimality condition

$$\nabla f(x + \Delta x) \approx \nabla f(x) + \nabla^2 f(x) \Delta x = 0$$

• Newton's method can be extended to handle

 $\min f(x)$
s.t. Ax = b

(Intuitively this is reasonable because the equality constrained min. problem is equivalent to $\min_z f(A^{\dagger}b + Fz)$ for some F such that $\mathcal{R}(F) = \mathcal{N}(A)$).

• Newton's method has fast convergence in general.

Central Path

• The log barrier approximation

$$\min f_0(x) + \mu \phi(x) \tag{*}$$

s.t. $Ax = b$

- is an accurate approx. of the original problem for $\mu \to 0$ (with $\mu > 0$).
- becomes difficult to minimize as $\mu \rightarrow 0$ (true at least for Newton's method)
- The basic idea: start with a large μ , and iteratively reduce μ until a desired solution accuracy is reached.
- Define $x^{\star}(\mu)$ to be the solution of (*).
- Central path

$$\{x \mid x = x^{\star}(\mu), \mu > 0\}$$

is the collection of optimal points for various μ . A property:

$$f_0(x^\star(\mu)) - p^\star \le m\mu$$

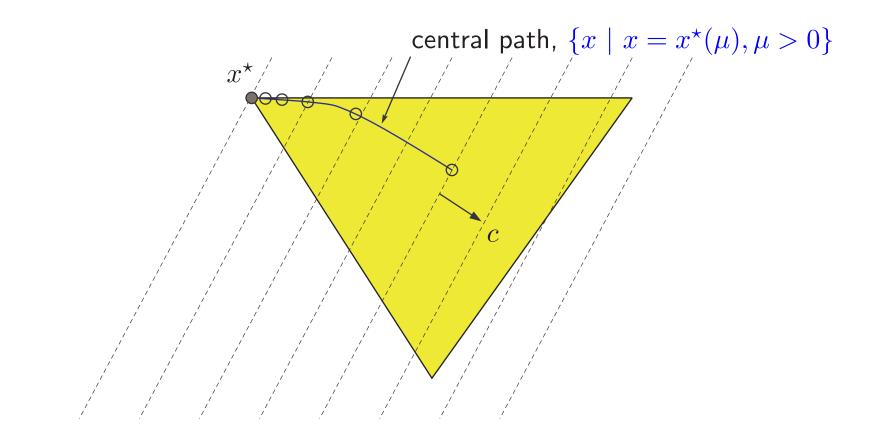


Illustration of the central path of LP. An interior-point method would follow the central path to iteratively approach the optimal solution.

A Path Following Method (or Barrier Method)

Path Following Method given an initial strictly feasible point x, μ , $\epsilon > 0$, & $\beta < 1$. repeat

1. Centering step. Starting at x, use Newton's method to solve

$$x^{\star}(\mu) = \min_{x} \mu f_0(x) + \phi(x) \text{ s.t. } Ax = b,$$

- 2. Update. $x := x^{\star}(\mu)$.
- 3. Stopping criterion. quit if $m\mu < \epsilon$.
- 4. Target shifting. $\mu := \beta \mu$.
- Short-step path following: choose β close to 1.
 - small number of Newton steps per outer iteration
 - large number of outer iterations
- Long-step path following: choose a small β .
 - increased number of Newton steps per outer iteration
 - smaller number of outer iterations

Log Barrier for Conic Optimization

• Conic problem in standard form

 $\min c^T x$
s.t. $Ax = b, \ x \succeq_K 0$

• Log barriers for

- LP: $K = \mathbb{R}^n_+$ $\phi(x) = -\sum_{i=1}^n \log(x_i)$ - SOCP: $K = \{(x, t) \mid ||x||_2 \le t\}$ $\phi(x) = \log(t - ||x||_2^2/t)$ - SDP: $K = \{X \in \mathbb{S}^n \mid X \succeq 0\}$ $\phi(X) = -\log \det(X)$

• These barriers are **self-concordant** (def. skipped), from which appealing convergence results can be proven.

Primal-Dual Path Following Method for SDP

- Primal-dual path following has good control over solution accuracy.
- The idea: Approximate the KKT conditions of the barrier problems.
- Primal-dual path following can be applied to general convex problems, but here we use SDP as an example.
- Features of primal-dual path following
 - simultaneously produce primal and dual points at each iteration
 - the central path parameter μ is adaptively updated according to the current primal and dual points.
 - no inner-outer iterations as in primal path following

• SDP in standard form

$$\min_{X} \operatorname{tr}(CX)$$
(SDP)
s.t. $X \succeq 0, \ \operatorname{tr}(A_i X) = b_i, \ i = 1, \dots, m$

where $A_i \in \mathbf{S}^n$, $b_i \in \mathbf{R}$.

• The dual problem

$$\max_{y,Z} b^T y$$
(DSDP)
s.t. $Z \succeq 0, \ C - Z - \sum_{i=1}^m y_i A_i = 0$

• The KKT conditions: for $(X,y,Z)=(X^{\star},y^{\star},Z^{\star})$,

$$\begin{aligned} X \succeq 0, Z \succeq 0 \\ C - Z - \sum_{i=1}^{m} y_i A_i &= 0 \\ b_i - \operatorname{tr}(A_i X) &= 0, \ i = 1, \dots, m \\ \hline Z X &= 0 \end{aligned} \text{ (complementary slackness)}$$

• Consider the barrier problem of the dual SDP (DSDP)

$$\max_{\substack{y,Z \succ 0}} b^T y + \mu \log \det Z$$
(DBP)
s.t. $C - Z - \sum_{i=1}^m y_i A_i = 0$

• The KKT conditions for (DBP): for $(X, y, Z) = (X^*(\mu), y^*(\mu), Z^*(\mu))$,

$$\mu Z^{-1} - X = 0$$

$$C - Z - \sum_{i=1}^{m} y_i A_i = 0$$

$$b_i - \mathbf{tr}(A_i X) = 0, \ i = 1, \dots, m$$

• A property for the duality gap:

$$\mathbf{tr}(CX^{\star}(\mu)) - b^T y^{\star}(\mu) = \mathbf{tr}(Z^{\star}(\mu)X(\mu)) = \mu/n$$

As $\mu \to 0$, the duality gap is zero and $(X^*(\mu), y^*(\mu), Z^*(\mu)) \to (X^*, y^*, Z^*)$.

Primal-Dual Path Following Method for SDP given an initial strictly feasible point $(X, y, Z) = (X^{(0)}, y^{(0)}, Z^{(0)})$, $\epsilon > 0$. repeat

- 1. Compute the current μ . $\mu := \operatorname{tr}(ZX)/n$.
- 2. Target shifting. $\mu := \mu/2$.

3. Compute search directions for new μ . Compute $(\Delta X, \Delta y, \Delta Z)$ by solving the KKT eqns.

 $\mu(Z + \Delta Z)^{-1} - (X + \Delta X) = 0$ $C - (Z + \Delta Z) - \sum_{i=1}^{m} (y_i + \Delta y_i) A_i = 0$ $b_i - \operatorname{tr}(A_i(X + \Delta X)) = 0, \ i = 1, \dots, m$

in an approximate manner.

 4. Line search. Compute primal & dual step-sizes α_p, α_d such that X + α_pΔX ≻ 0 Z + α_dΔZ ≻ 0
 5. Update. X := X + α_pΔX, y := y + α_dΔy, Z := Z + α_dΔZ.
 6. Stopping criterion. quit if tr(ZX) < ε.

Approximation of the KKT equations (Step 3):

For a primal-dual feasible iterate (X, y, Z), the eqns in Step 3 are expressed as

$$\mu(Z + \Delta Z)^{-1} = (X + \Delta X) \tag{1}$$

$$-\Delta Z - \sum_{i=1}^{m} \Delta y_i A_i = 0 \tag{2}$$

$$\mathbf{tr}(A_i \Delta X) = 0, \ i = 1, \dots, m \tag{3}$$

(2)-(3) are linear & are easy to handle. The difficulty mainly lies in (1).

Apply a 1st-order approximation to (1) (note: from this point there are many possible variations); e.g., in [Helmberg et. al'96],

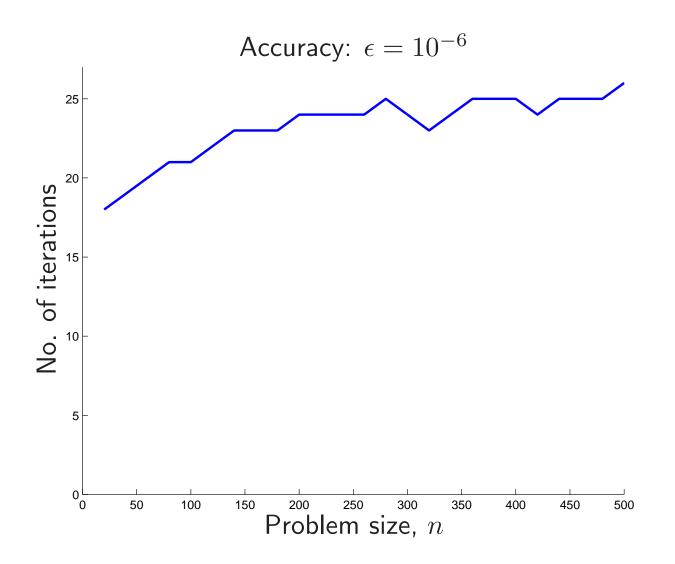
$$\mu I = (Z + \Delta Z)(X + \Delta X) = ZX + Z\Delta X + X\Delta Z + \Delta Z\Delta X$$
$$\approx ZX + Z\Delta X + X\Delta Z$$
(4)

Equations (2)-(4) (modified linearized KKT eqns.) are linear in $(\Delta X, \Delta y, \Delta Z)$, and can be solved in closed form.

• Convergence analysis for primal-dual path following methods suggests the following:

For a given tolerance $\epsilon > 0$ (such that $\operatorname{tr}(CX) - p^* < \epsilon$), terminates in $\mathcal{O}\left(\sqrt{n}\log\frac{\operatorname{tr}(X^{(0)}Z^{(0)})}{\epsilon}\right)$ iterations in the worst case.

• Practical experience (e.g., with the MIMO detection application described later) suggests that the no. of iterations grows much more slower than \sqrt{n} .



Nos. of iterations of the primal-dual SDP path following method in practice. The problem is $\min \mathbf{tr}(CX) \text{ s.t. } X_{ii} = 1, i = 1, \dots, n$

As seen, the nos. of iterations appear to be flat for large n.

Other (Even More Advanced) Interior-Point Methods

- Self-dual embedding (used in SeDuMi)
- Dual scaling (used in DSDP)
- Infeasible primal-dual path following (used in SDPT3)

• ...

References

[Boyd-Vanderberghe'04] Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*, Cambridge Univ. Press, 2004.

[Helmberg-Rendl-Vanderbei-Wolkowicz'96] C. Helmberg, F. Rendl, R.J. Vanderbei, and H. Wolkowicz, "An interior-point method for SDP", *SIAM J. Optim.*, 1996.