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Before we go...

• Interior-point methods play an indispensable role in convex optimization.

• Modern LP/SOCP/SDP solvers, such as SeDuMi, SDPT3, and DSDP, are
interior-point methods.

• What we will do:

Provide intuitive insights into the ideas that led to this beautiful technique.

• What we will not go through:

Convergence/complexity analysis, coverage of all interior-point algorithms (there
are numerous!), complete derivations, implementation details, . . .
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Trapping Points within the Feasible Set

• Convex problem in standard form

min f0(x) (†)
s.t. Ax = b, fi(x) ≤ 0, i = 1, . . . ,m

where f0, . . . , fm are assumed to be convex & twice differentiable.

• The inequality constraints can be made implicit by rewriting (†) as

min f0(x) +

m
∑

i=1

I−(fi(x))

s.t. Ax = b

where I−(u) = 0 for u ≤ 0, I−(u) = ∞ otherwise.

• But I− is not differentiable.

• The basic idea: approximate I− by some differentiable function.
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Logarithmetic Barrier Function

• Approximate I− by

Î−(u) = −µ log(−u), domÎ− = {x ∈ R | x < 0}

where µ > 0 is a parameter that controls the accuracy of the approx.

Example: a single inequality
x ≥ 0.

The corresponding approx. is

−µ log(x)
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Example: A set of linear inequalities bi − aTi x ≤ 0, i = 1, . . . ,m.

The corresponding approx. is

−µ

m
∑

i=1

log(aTi x− bi)
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• An approximation of the original problem

min f0(x) + µφ(x) (‡)
s.t. Ax = b

with φ(x) = −∑m
i=1 log(−fi(x)), domφ = {x | fi(x) < 0, i = 1, . . . ,m}.

• φ is called the logarithmetic barrier function. Some nice properties:

– φ is convex (by composition).
– φ is twice differentiable:

∇φ(x) =
m
∑

i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =
m
∑

i=1

1

f2
i (x)

∇fi(x)∇fi(x)
T +

m
∑

i=1

1

−fi(x)
∇2fi(x)

• This means that the objective fn. of (‡) is convex and twice differentiable.
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Building Block: Newton’s Method

• Consider unconstrained minimization of convex f : Rn → R

min f(x)

• Optimality condition: ∇f(x⋆) = 0.

Newton’s Method

given an initial point x ∈ domf , a tolerance ǫ > 0.
repeat

1. Compute the Newton step.

∆x = −(∇2f(x))−1∇f(x)
2. Line search. Choose step size α by solving

min0≤α≤1 f(x+ α∆x)
3. Update. x := x+ α∆x.
4. Stopping criterion. quit if 1

2∇f(x)T (∇2f(x))−1∇f(x) ≤ ǫ

• The idea: first-order approximation of the optimality condition

∇f(x+∆x) ≈ ∇f(x) +∇2f(x)∆x = 0
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• Newton’s method can be extended to handle

min f(x)

s.t. Ax = b

(Intuitively this is reasonable because the equality constrained min. problem is
equivalent to minz f(A

†b+ Fz) for some F such that R(F ) = N (A)).

• Newton’s method has fast convergence in general.
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Central Path

• The log barrier approximation

min f0(x) + µφ(x) (∗)
s.t. Ax = b

– is an accurate approx. of the original problem for µ → 0 (with µ > 0).
– becomes difficult to minimize as µ → 0 (true at least for Newton’s method)

• The basic idea: start with a large µ, and iteratively reduce µ until a desired
solution accuracy is reached.

• Define x⋆(µ) to be the solution of (∗).

• Central path
{x | x = x⋆(µ), µ > 0}

is the collection of optimal points for various µ. A property:

f0(x
⋆(µ))− p⋆ ≤ mµ
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c

x⋆

central path, {x | x = x⋆(µ), µ > 0}

Illustration of the central path of LP. An interior-point method would follow the central

path to iteratively approach the optimal solution.
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A Path Following Method (or Barrier Method)

Path Following Method

given an initial strictly feasible point x, µ, ǫ > 0, & β < 1.
repeat

1. Centering step. Starting at x, use Newton’s method to solve
x⋆(µ) = minx µf0(x) + φ(x) s.t. Ax = b,

2. Update. x := x⋆(µ).
3. Stopping criterion. quit if mµ < ǫ.
4. Target shifting. µ := βµ.

• Short-step path following: choose β close to 1.

– small number of Newton steps per outer iteration
– large number of outer iterations

• Long-step path following: choose a small β.

– increased number of Newton steps per outer iteration
– smaller number of outer iterations
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Log Barrier for Conic Optimization

• Conic problem in standard form

min cTx

s.t. Ax = b, x �K 0

• Log barriers for

– LP: K = R
n
+

φ(x) = −∑n
i=1 log(xi)

– SOCP: K = {(x, t) | ‖x‖2 ≤ t}

φ(x) = log
(

t− ‖x‖22/t
)

– SDP: K = {X ∈ S
n | X � 0}

φ(X) = − log det(X)

• These barriers are self-concordant (def. skipped), from which appealing
convergence results can be proven.
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Primal-Dual Path Following Method for SDP

• Primal-dual path following has good control over solution accuracy.

• The idea: Approximate the KKT conditions of the barrier problems.

• Primal-dual path following can be applied to general convex problems, but here
we use SDP as an example.

• Features of primal-dual path following

– simultaneously produce primal and dual points at each iteration
– the central path parameter µ is adaptively updated according to the current

primal and dual points.
– no inner-outer iterations as in primal path following
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• SDP in standard form

min
X

tr(CX) (SDP)

s.t. X � 0, tr(AiX) = bi, i = 1, . . . ,m

where Ai ∈ S
n, bi ∈ R.

• The dual problem

max
y,Z

bTy (DSDP)

s.t. Z � 0, C − Z −∑m
i=1 yiAi = 0

• The KKT conditions: for (X, y, Z) = (X⋆, y⋆, Z⋆),

X � 0, Z � 0

C − Z −∑m
i=1 yiAi = 0

bi − tr(AiX) = 0, i = 1, . . . ,m

ZX= 0 (complementary slackness)
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• Consider the barrier problem of the dual SDP (DSDP)

max
y,Z≻0

bTy + µ log detZ (DBP)

s.t. C − Z −∑m
i=1 yiAi = 0

• The KKT conditions for (DBP): for (X, y, Z) = (X⋆(µ), y⋆(µ), Z⋆(µ)),

µZ−1 −X= 0

C − Z −∑m
i=1 yiAi = 0

bi − tr(AiX) = 0, i = 1, . . . ,m

• A property for the duality gap:

tr(CX⋆(µ))− bTy⋆(µ) = tr(Z⋆(µ)X(µ)) = µ/n

As µ → 0, the duality gap is zero and (X⋆(µ), y⋆(µ), Z⋆(µ)) → (X⋆, y⋆, Z⋆).

W.-K. Ma 14



Primal-Dual Path Following Method for SDP

given an initial strictly feasible point (X, y, Z) = (X(0), y(0), Z(0)), ǫ > 0.
repeat

1. Compute the current µ. µ := tr(ZX)/n.
2. Target shifting. µ := µ/2.
3. Compute search directions for new µ. Compute (∆X,∆y,∆Z) by
solving the KKT eqns.

µ(Z +∆Z)−1 − (X +∆X)= 0

C − (Z +∆Z)−∑m
i=1(yi +∆yi)Ai = 0

bi − tr(Ai(X +∆X)) = 0, i = 1, . . . ,m

in an approximate manner.
4. Line search. Compute primal & dual step-sizes αp, αd such that

X + αp∆X ≻ 0 Z + αd∆Z ≻ 0
5. Update. X := X + αp∆X , y := y + αd∆y, Z := Z + αd∆Z.
6. Stopping criterion. quit if tr(ZX) < ǫ.
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Approximation of the KKT equations (Step 3):

For a primal-dual feasible iterate (X, y, Z), the eqns in Step 3 are expressed as

µ(Z +∆Z)−1= (X +∆X) (1)

−∆Z −∑m
i=1∆yiAi = 0 (2)

tr(Ai∆X) = 0, i = 1, . . . ,m (3)

(2)-(3) are linear & are easy to handle. The difficulty mainly lies in (1).

Apply a 1st-order approximation to (1) (note: from this point there are many
possible variations); e.g., in [Helmberg et. al’96],

µI = (Z +∆Z)(X +∆X) = ZX + Z∆X +X∆Z +∆Z∆X

≈ ZX + Z∆X +X∆Z (4)

Equations (2)-(4) (modified linearized KKT eqns.) are linear in (∆X,∆y,∆Z),
and can be solved in closed form.
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• Convergence analysis for primal-dual path following methods suggests the
following:

For a given tolerance ǫ > 0 (such that tr(CX)− p⋆ < ǫ), terminates in

O
(√

n log
tr(X(0)Z(0))

ǫ

)

iterations

in the worst case.

• Practical experience (e.g., with the MIMO detection application described later)
suggests that the no. of iterations grows much more slower than

√
n.

W.-K. Ma 17



0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Problem size, n

N
o.

of
it
er
at
io
n
s

Accuracy: ǫ = 10−6

Nos. of iterations of the primal-dual SDP path following method in practice. The problem is

min tr(CX) s.t. Xii = 1, i = 1, . . . , n

As seen, the nos. of iterations appear to be flat for large n.
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Other (Even More Advanced) Interior-Point Methods

• Self-dual embedding (used in SeDuMi)

• Dual scaling (used in DSDP)

• Infeasible primal-dual path following (used in SDPT3)

• ...
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