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Before we go...

e [nterior-point methods play an indispensable role in convex optimization.

e Modern LP/SOCP/SDP solvers, such as SeDuMi, SDPT3, and DSDP, are
interior-point methods.
e \What we will do:

Provide intuitive insights into the ideas that led to this beautiful technique.

e \What we will not go through:

Convergence/complexity analysis, coverage of all interior-point algorithms (there
are numerous!), complete derivations, implementation details, . . .
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Trapping Points within the Feasible Set

e Convex problem in standard form

min fo(z) (1)
st. Az =0b, fi(x)<0,1=1,...,m

where fq, ..., f,, are assumed to be convex & twice differentiable.

e The inequality constraints can be made implicit by rewriting (}) as

min fo(z) + > I (fi(x))
i=1
s.t. Ax =10
where I_(u) = 0 for u < 0, I_(u) = co otherwise.

e But /_ is not differentiable.

e The basic idea: approximate /_ by some differentiable function.
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Logarithmetic Barrier Function

e Approximate I_ by
I_(u) = —plog(—u), dom/_ ={zr e R |z <0}

where 1 > 0 is a parameter that controls the accuracy of the approx.
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=12
. . . of - p=1/4
Example: a single inequality —n=1/3
x > 0. L
O
The corresponding approx. is El
<
—plog(z)
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Example: A set of linear inequalities b; —alz < 0,i=1,...,m.

The corresponding approx. is

—u> " log(aTw — by)
1=1
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e An approximation of the original problem

min fo(x) + po(x) (1)
s.t. Ax = b

with ¢(z) = —>_."  log(—fi(x)), dom¢ = {z | fi(x) <0,i=1,...,m}.

e ¢ is called the logarithmetic barrier function. Some nice properties:
— ¢ is convex (by composition).

— @ Is twice differentiable:

1
— —fi(z)

- 2
z;ff Vfi(2)V fi(z +Z f@ )sz(>

1=

Vo(x) = V fi(x)

|'M§

e This means that the objective fn. of (1) is convex and twice differentiable.
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Building Block: Newton’s Method

e Consider unconstrained minimization of convex f : R — R
min f(x)

e Optimality condition: V f(x*) = 0.

Newton’s Method
given an initial point x € domf, a tolerance € > 0.
repeat

1. Compute the Newton step.

Az = —(V2f(2)) "'V f(z)
2. Line search. Choose step size o by solving
ming<q<1 f(z + aAx)
3. Update. z := x + aAx.
4. Stopping criterion. quit if 2V f(z)T(V2f(x)) 'V f(z) <e

e The idea: first-order approximation of the optimality condition

Vflx+Azx) = Vf(r)+Vf(x)Az =0
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e Newton's method can be extended to handle

min f(x)
s.t. Ax =10

(Intuitively this is reasonable because the equality constrained min. problem is
equivalent to min, f(A'b + Fz) for some F such that R(F) = N(A)).

e Newton's method has fast convergence in general.
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Central Path

e The log barrier approximation

min fo(z) + uo(x) (+)
s.t. Ax = b

— is an accurate approx. of the original problem for y — 0 (with p > 0).
— becomes difficult to minimize as p — 0 (true at least for Newton's method)

e The basic idea: start with a large 1, and iteratively reduce p until a desired
solution accuracy is reached.

e Define z*(u) to be the solution of (x).

e Central path
{z | z=2a2"(n),pn> 0}
is the collection of optimal points for various . A property:

fo(z™(p)) = p™ < mp
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central path, {x | x = 2*(u), un > 0}

lllustration of the central path of LP. An interior-point method would follow the central
path to iteratively approach the optimal solution.
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A Path Following Method (or Barrier Method)

Path Following Method
given an initial strictly feasible point z, u, e > 0, & 5 < 1.
repeat
1. Centering step. Starting at x, use Newton's method to solve
r*(p) = ming pfo(x) + ¢(x) s.t. Ax =b,
2. Update. x := x* ().
3. Stopping criterion. quit if mu < e.
4. Target shifting. 1 := [Bpu.

e Short-step path following: choose 3 close to 1.

— small number of Newton steps per outer iteration
— large number of outer iterations

e Long-step path following: choose a small £.

— increased number of Newton steps per outer iteration
— smaller number of outer iterations
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Log Barrier for Conic Optimization

e Conic problem in standard form

min ¢!z

s.t. Ax =b, x =g 0

e Log barriers for
— LP: K =R
¢(x) = — > i log(x;)
= SOCP: K = {(z,1) | [|z]]2 <t}

¢(z) =log (t — ||l=3/1)
— SDP: K ={X €8S™ | X > 0}
»(X) = —logdet(X)

e These barriers are self-concordant (def. skipped), from which appealing
convergence results can be proven.
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Primal-Dual Path Following Method for SDP

e Primal-dual path following has good control over solution accuracy.
e The idea: Approximate the KKT conditions of the barrier problems.

e Primal-dual path following can be applied to general convex problems, but here
we use SDP as an example.

e Features of primal-dual path following

— simultaneously produce primal and dual points at each iteration

— the central path parameter i is adaptively updated according to the current
primal and dual points.

— no inner-outer iterations as in primal path following
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e SDP in standard form

min tr(C'X)
X

s.t. X ~ O, tI‘(AZX) — bi; 1= 1,...,m
where A; € S, b; € R.

e The dual problem

max b’y
(/4

S.t.ZtO, C—Z—ZzlyzAZ:O

e The KKT conditions: for (X,y, Z) = (X*,y*, Z%),

X>0,Z2>0
C—Z—=3 "1yl =0
bz—tr(A,LX):O, izl,...,m

ZX=0 (complementary slackness)

(SDP)

(DSDP)
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e Consider the barrier problem of the dual SDP (DSDP)

T
max, b*y + plogdet Z (DBP)

st. C — 2 — Zgl yzAz =0

e The KKT conditions for (DBP): for (X,y,Z) = (X*(u), y* (1), Z*(p)),

nZ ' —X=0
C—Z—=3"yidi=0
bi—tr(AiX):O, izl,...,m

e A property for the duality gap:

tr(CX* (1) = b y*(p) = tr(Z* (1) X () = p/n

As 1 — 0, the duality gap is zero and (X™*(u),y* (), Z* (1)) — (X*,y*, Z7%).
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Primal-Dual Path Following Method for SDP

given an initial strictly feasible point (X, y, Z) = (X, ¢y 7)) ¢ > 0.

repeat
1. Compute the current . p:=tr(ZX)/n.
2. Target shifting. p:= /2.
3. Compute search directions for new p. Compute (AX, Ay, AZ) by
solving the KKT egns.

W Z+AZ)"P— (X +AX)=0
C—(Z+AZ)=30 (yi + Ay;)Ai =0
b —tr(A;(X + AX)) =0, i=1,...,m

In an approximate manner.

4. Line search. Compute primal & dual step-sizes «,, ag such that
X + apAX =0 Z 4+ agAZ ~ 0

5. Update. X := X + a,AX, y:=y+ agAy, Z :=Z + agAZ.

6. Stopping criterion. quit if tr(ZX) < e.
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Approximation of the KKT equations (Step 3):

For a primal-dual feasible iterate (X, y, Z), the eqns in Step 3 are expressed as

wW(Z +AZ) = (X + AX) (1)
—AZ =" Ay A =0 (2)
tr(A;,AX)=0,1=1,...,m (3)

(2)-(3) are linear & are easy to handle. The difficulty mainly lies in (1).

Apply a 1st-order approximation to (1) (note: from this point there are many
possible variations); e.g., in [Helmberg et. al’96],

uwl = (Z+AZ) X +AX) = ZX + ZAX + XAZ + AZAX
~ZX + ZAX + XAZ (4)

Equations (2)-(4) (modified linearized KKT eqns.) are linear in (AX, Ay, AZ),
and can be solved in closed form.
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e Convergence analysis for primal-dual path following methods suggests the
following:

For a given tolerance € > 0 (such that tr(CX) — p* < €), terminates in

Iiterations

(0) 7(0)
C’)(\/ﬁlogtr(X Z ))

In the worst case.

e Practical experience (e.g., with the MIMO detection application described later)
suggests that the no. of iterations grows much more slower than /n.
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Accuracy: € = 107
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Problem size, n

Nos. of iterations of the primal-dual SDP path following method in practice. The problem is
min tI‘(CX) s.t. Xm = 1,i = 1, ..o
As seen, the nos. of iterations appear to be flat for large n.
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Other (Even More Advanced) Interior-Point Methods

e Self-dual embedding (used in SeDuMi)
e Dual scaling (used in DSDP)

e Infeasible primal-dual path following (used in SDPT3)
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